Computing eigenvalues and Hermite interpolation for Dirac systems with eigenparameter in boundary conditions
نویسنده
چکیده
Eigenvalue problems with eigenparameter appearing in the boundary conditions usually have complicated characteristic determinant where zeros cannot be explicitly computed. In this paper we use the derivative sampling theorem ‘Hermite interpolations’ to compute approximate values of the eigenvalues of Dirac systems with eigenvalue parameter in one or two boundary conditions. We use recently derived estimates for the truncation and amplitude errors to compute error bounds. Using computable error bounds, we obtain eigenvalue enclosures. Examples with tables and illustrative figures are given. Also numerical examples, which are given at the end of the paper, give comparisons with the classical sinc-method in Annaby and Tharwat (BIT Numer. Math. 47:699-713, 2007) and explain that the Hermite interpolations method gives remarkably better results. MSC: 34L16; 94A20; 65L15
منابع مشابه
Inverse problem for Sturm-Liouville operators with a transmission and parameter dependent boundary conditions
In this manuscript, we consider the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. We prove by defining a new Hilbert space and using spectral data of a kind, the potential function can be uniquely determined by a set of value of eigenfunctions at an interior point and p...
متن کاملInverse Sturm-Liouville problems with a Spectral Parameter in the Boundary and transmission conditions
In this manuscript, we study the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. By defining a new Hilbert space and using its spectral data of a kind, it is shown that the potential function can be uniquely determined by part of a set of values of eigenfunctions at som...
متن کاملInverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions
In this paper, we study the inverse problem for Dirac differential operators with discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...
متن کاملAn Optimal G^2-Hermite Interpolation by Rational Cubic Bézier Curves
In this paper, we study a geometric G^2 Hermite interpolation by planar rational cubic Bézier curves. Two data points, two tangent vectors and two signed curvatures interpolated per each rational segment. We give the necessary and the sufficient intrinsic geometric conditions for two C^2 parametric curves to be connected with G2 continuity. Locally, the free parameters w...
متن کاملInverse nodal problems for the p-Laplacian with eigenparameter dependent boundary conditions
We study the issues of reconstruction of the inverse nodal problem for the one-dimensional p-Laplacian eigenvalue problem with eigenparameter boundary value conditions. A key step is the application of a modified Prüfer substitution to derive a detailed asymptotic expansion for the eigenvalues and nodal lengths. The parameter boundary data are also reconstructed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013